Recurrent Neural Network Method in Arabic Words Recognition System
نویسنده
چکیده
The recognition of unconstrained handwriting continues to be a difficult task for computers despite active research for several decades. This is because handwritten text offers great challenges such as character and word segmentation, character recognition, variation between handwriting styles, different character size and no font constraints as well as the background clarity. In this paper primarily discussed Online Handwriting Recognition methods for Arabic words which being often used among then across the Middle East and North Africa people. Because of the characteristic of the whole body of the Arabic words, namely connectivity between the characters, thereby the segmentation of An Arabic word is very difficult. We introduced a recurrent neural network to online handwriting Arabic word recognition. The key innovation is a recently produce recurrent neural networks objective function known as connectionist temporal classification. The system consists of an advanced recurrent neural network with an output layer designed for sequence labeling, partially combined with a probabilistic language model. Experimental results show that unconstrained Arabic words achieve recognition rates about 79%, which is significantly higher than the about 70% using a previously developed hidden markov model based recognition system.
منابع مشابه
Speech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملOnline Cursive Handwriting Mongolia Words Recognition with Recurrent Neural Networks
This paper primarily discussed Online Handwriting Recognition methods for Mongolia words which being often used among the Mongolia people in the North China. Because of the characteristic of the whole body of the Mongolia words, namely connectivity between the characters, thereby the segmentation of Mongolia words is very difficult. We introduced a recurrent neural network to online handwriting...
متن کاملPAYMA: A Tagged Corpus of Persian Named Entities
The goal in the named entity recognition task is to classify proper nouns of a piece of text into classes such as person, location, and organization. Named entity recognition is an important preprocessing step in many natural language processing tasks such as question-answering and summarization. Although many research studies have been conducted in this area in English and the state-of-the-art...
متن کاملEfficient System for Speech Recognition using General Regression Neural Network
In this paper we present an efficient system for independent speaker speech recognition based on neural network approach. The proposed architecture comprises two phases: a preprocessing phase which consists in segmental normalization and features extraction and a classification phase which uses neural networks based on nonparametric density estimation namely the general regression neural networ...
متن کاملAn Evaluation of Mahalanobis-Taguchi System and Neural Network for Multivariate Pattern Recognition
The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases. The goal of this study is to compare the ability of the Mahalanobis- Taguchi System and a neural-network to discriminate using small data sets. We examine the discriminant ability as a function of data set size using an application area where reliable data is publicly available. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1301.4662 شماره
صفحات -
تاریخ انتشار 2012